Biochemical analysis of human POLG2 variants associated with mitochondrial disease.
نویسندگان
چکیده
Defects in mitochondrial DNA (mtDNA) maintenance comprise an expanding repertoire of polymorphic diseases caused, in part, by mutations in the genes encoding the p140 mtDNA polymerase (POLG), its p55 accessory subunit (POLG2) or the mtDNA helicase (C10orf2). In an exploration of nuclear genes for mtDNA maintenance linked to mitochondrial disease, eight heterozygous mutations (six novel) in POLG2 were identified in one control and eight patients with POLG-related mitochondrial disease that lacked POLG mutations. Of these eight mutations, we biochemically characterized seven variants [c.307G>A (G103S); c.457C>G (L153V); c.614C>G (P205R); c.1105A>G (R369G); c.1158T>G (D386E); c.1268C>A (S423Y); c.1423_1424delTT (L475DfsX2)] that were previously uncharacterized along with the wild-type protein and the G451E pathogenic variant. These seven mutations encode amino acid substitutions that map throughout the protein, including the p55 dimer interface and the C-terminal domain that interacts with the catalytic subunit. Recombinant proteins harboring these alterations were assessed for stimulation of processive DNA synthesis, binding to the p140 catalytic subunit, binding to dsDNA and self-dimerization. Whereas the G103S, L153V, D386E and S423Y proteins displayed wild-type behavior, the P205R and R369G p55 variants had reduced stimulation of processivity and decreased affinity for the catalytic subunit. Additionally, the L475DfsX2 variant, which possesses a C-terminal truncation, was unable to bind the p140 catalytic subunit, unable to bind dsDNA and formed aberrant oligomeric complexes. Our biochemical analysis helps explain the pathogenesis of POLG2 mutations in mitochondrial disease and emphasizes the need to quantitatively characterize the biochemical consequences of newly discovered mutations before classifying them as pathogenic.
منابع مشابه
POLG2 disease variants: analyses reveal a dominant negative heterodimer, altered mitochondrial localization and impaired respiratory capacity.
Human mitochondrial DNA (mtDNA) is replicated and repaired by the mtDNA polymerase gamma, polγ. Polγ is composed of three subunits encoded by two nuclear genes: (1) POLG codes for the 140-kilodalton (kDa) catalytic subunit, p140 and (2) POLG2 encodes the ∼110-kDa homodimeric accessory subunit, p55. Specific mutations are associated with POLG- or POLG2-related disorders. During DNA replication t...
متن کاملTargeted exome sequencing of suspected mitochondrial disorders.
OBJECTIVE To evaluate the utility of targeted exome sequencing for the molecular diagnosis of mitochondrial disorders, which exhibit marked phenotypic and genetic heterogeneity. METHODS We considered a diverse set of 102 patients with suspected mitochondrial disorders based on clinical, biochemical, and/or molecular findings, and whose disease ranged from mild to severe, with varying age at o...
متن کاملDeep Sequencing Reveals Novel Genetic Variants in Children with Acute Liver Failure and Tissue Evidence of Impaired Energy Metabolism
BACKGROUND & AIMS The etiology of acute liver failure (ALF) remains elusive in almost half of affected children. We hypothesized that inherited mitochondrial and fatty acid oxidation disorders were occult etiological factors in patients with idiopathic ALF and impaired energy metabolism. METHODS Twelve patients with elevated blood molar lactate/pyruvate ratio and indeterminate etiology were s...
متن کاملProgressive external ophthalmoplegia and vision and hearing loss in a patient with mutations in POLG2 and OPA1.
OBJECTIVE To describe the clinical features, muscle pathological characteristics, and molecular studies of a patient with a mutation in the gene encoding the accessory subunit (p55) of polymerase gamma (POLG2) and a mutation in the OPA1 gene. DESIGN Clinical examination and morphological, biochemical, and molecular analyses. SETTING Tertiary care university hospitals and molecular genetics ...
متن کاملPOLG2 deficiency causes adult‐onset syndromic sensory neuropathy, ataxia and parkinsonism
OBJECTIVE Mitochondrial dysfunction plays a key role in the pathophysiology of neurodegenerative disorders such as ataxia and Parkinson's disease. We describe an extended Belgian pedigree where seven individuals presented with adult-onset cerebellar ataxia, axonal peripheral ataxic neuropathy, and tremor, in variable combination with parkinsonism, seizures, cognitive decline, and ophthalmoplegi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 20 15 شماره
صفحات -
تاریخ انتشار 2011